

GraphLog documentation

GraphLog [https://github.com/facebookresearch/graphlog] is a multi-purpose, multi-relational graph dataset built using rules grounded in first-order logic. GraphLog can be used to benchmark existing Graph Neural Network (GNN) family of models on relation prediction task.

[image: GraphLog image]

Getting Started

	Installation

	Basic Usage

	Advanced Usage

Blog

You can read more about GraphLog at our blog post [https://www.cs.mcgill.ca/~ksinha4/about-graphlog/].

Paper

GraphLog is introduced in the paper “Evaluating Logical Generalization in Graph Neural
Networks” [https://arxiv.org/abs/2003.06560]. If you find our dataset useful, consider citing our work.

@article{sinha2020graphlog,
 Author = {Koustuv Sinha and Shagun Sodhani and Joelle Pineau and William L. Hamilton},
 Title = {Evaluating Logical Generalization in Graph Neural Networks},
 Year = {2020},
 arxiv = {https://arxiv.org/abs/2003.06560}
}

Community

	If you have questions, open an Issue [https://github.com/facebookresearch/graphlog/issues]

	Or, join our Slack channel [https://join.slack.com/t/logicalml/shared_invite/zt-e7osm7j7-vfIRgJAbEHxYN5D70njvyw] and post your questions / comments!

	To contribute, open a Pull Request (PR) [https://github.com/facebookresearch/GraphLog/pulls]

Installation

Install Pytorch and Pytorch Geometric in your system, according to your system requirements (cpu or cuda).

	Install Pytorch [https://pytorch.org/get-started/locally/]

	Install Pytorch Geometric (and all its dependencies) [https://github.com/rusty1s/pytorch_geometric#installation]

	Install the latest version of GraphLog directly from PyPI:

pip install graphlog==1.0.0

Basic Usage

GraphLog can be used as a regular Python module to access the datasets
used in the paper “Evaluating Logical Generalization in Graph Neural
Networks”. Additionally, GraphLog also provides necessary
Dataset [https://pytorch.org/docs/stable/data.html?highlight=dataset#torch.utils.data.Dataset]
and
DataLoader [https://pytorch.org/docs/stable/data.html?highlight=dataloader#torch.utils.data.DataLoader]
packages for easy training and evaluation.

Loading the data

When GraphLog is imported for the first time, it downloads the data and
creates a ./data directory in the current working directory. The
downloaded data is then unzipped and placed within this directory.

from graphlog import GraphLog
gl = GraphLog()

To change the data directory, pass the data_dir argument.

gl = GraphLog(data_dir='/tmp/data')

Viewing the data

GraphLog consists of multiple datasets. Each dataset is built using
its own set of rules, which themselves are procedurally generated
and sampled from a large knowledge-base.

To view all possible datasets in GraphLog:

gl.get_dataset_names_by_split()

This will provide a list of dataset ids in train, valid and test splits.
To load a single dataset, use the get_dataset_by_name method:

rule_3 = gl.get_dataset_by_name('rule_3')
type(rule_3)

>> graphlog.dataset.GraphLogDataset

This will load a GraphLogDataset object, which is in-turn a Pytorch
Dataset instance. Each dataset also has its own training, validation
and test splits.

The GraphLogDataset object essentially contains Pytorch
Geometric [https://github.com/rusty1s/pytorch_geometric] graphs, a
query tuple of <source, sink> nodes for each datapoint, and a label
or relation to predict.

You can also view the aggregate statistics of the dataset:

gl.compute_stats_by_dataset("rule_3")

>> Data Split : train,
Number of Classes : 16,
Number of Descriptors : 189,
Average Resolution Length : 3.632142857142857,
Average number of nodes : 11.137 and edges : 13.273

{'num_class': 16,
 'num_des': 189,
 'avg_resolution_length': 3.632142857142857,
 'num_nodes': 11.137,
 'num_edges': 13.273,
 'split': 'train'}

You can also convert the dataset into
networkx [https://networkx.github.io/] format, in order to perform
quick calculations or visualization:

import networkx as nx
from graphlog.utils import load_networkx_graphs
nx_graphs, nx_queries = load_networkx_graphs(rule_3.json_graphs["train"])

nx.info(nx_graphs[0])

To view a single graph in the dataset, you can also use the inbuilt
display_single_graph api.

gl.display_single_graph(rule_3, "train",21)

[image: ../_images/output_16_0.svg]

Extracting dataloaders

We provide a method to generate dataloaders for each dataset as follows:

rule_3_train = gl.get_dataloader_by_mode(rule_3, mode="train")
rule_3_valid = gl.get_dataloader_by_mode(rule_3, mode="valid")
rule_3_test = gl.get_dataloader_by_mode(rule_3, mode="test")

Supervised Training

A very minimal dummy training script is provided below to show how easy
it is to train your models.

for batch_idx, batch in enumerate(rule_3_train):
 graphs = batch.graphs
 queries = batch.queries
 targets = batch.targets
 world_graphs = batch.world_graphs
 logits = your_model(graphs, queries, world_graphs)

Advanced Usage

GraphLog provides an array of datasets, thus making it a perfect
candidate to test multi-task, continual, and meta-learning in graphs.
Each dataset is derived by its own set of rules.

Similarity

Two datasets can have highly overlapping rules to highly non-overlapping
rules. This provides GraphLog a unique way to define the notion of task
similarity. Two datasets are highly similar if the underlying rules
are similar.

from graphlog import GraphLog
gl = GraphLog()

First, let’s get the available datasets in GraphLog

datasets = gl.get_dataset_names_by_split()

datasets["train"][0]

>> 'rule_3'

To calculate dataset similarity, we compute the overlap between the
actual rules used in the datasets. GraphLog provides an easy API to do
so.

gl.compute_similarity("rule_0","rule_1")

>> 0.95

We see that the datasets rule_0 and rule_1 are 95% similar. To
get top 10 similar datasets as of rule_0, we can call the following
method:

gl.get_most_similar_datasets("rule_0",10)

>> [('rule_0', 1.0),
 ('rule_1', 0.95),
 ('rule_2', 0.9),
 ('rule_3', 0.85),
 ('rule_4', 0.8),
 ('rule_5', 0.75),
 ('rule_6', 0.7),
 ('rule_7', 0.65),
 ('rule_8', 0.6),
 ('rule_9', 0.55)]

MultiTask training

By providing an easy way to extract datasets and also by grouping them
in terms of similarity, we can easily train and in a multi-task
scenario. Below we provide a dummy snippet to do so.

data_ids = gl.get_most_similar_datasets("rule_0",10)
for epoch in range(100):
 dataset = gl.get_dataset_by_name(random.choice(data_ids))
 train_loader = gl.get_dataloader_by_mode(dataset, "train")
 for batch_id, batch in enumerate(train_loader):
 graphs = batch.graphs
 queries = batch.queries
 labels = batch.targets
 logits = your_model(graphs, queries)

Difficulty

GraphLog also provides an additional option of categorizing each dataset
on their relative difficulty. We compute difficulty by the scores of
supervised learning methods as a proxy. For more details how we label
each dataset as per their difficulty, please check out our paper!

We provide additional meta-data to categorize the datasets with respect
to their difficulty. To access it, call the following API. This
will load the datasets directly in memory.

easy_datasets = gl.get_easy_datasets()
moderate_datasets = gl.get_moderate_datasets()
hard_datasets = gl.get_hard_datasets()

Continual Learning

Using any of the above categorizations, GraphLog also provides an option
of evaluating models in a continual learning scenario. Here, we provide
a simple example to evaluate continual learning on a rolling window of
similar datasets, based on overlapping rules.
get_sorted_dataset_ids(mode="train") API will return the datasets in
the order they were created in the paper, which follows a
rolling similarity.

dataset_names = gl.get_sorted_dataset_ids(mode="train")

for data_id in dataset_names:
 dataset = gl.get_dataset_by_name(data_id)
 for epoch in range(100):
 train_loader = gl.get_dataloader_by_mode(dataset, "train")
 for batch_id, batch in enumerate(train_loader):
 graphs = batch.graphs
 queries = batch.queries
 labels = batch.targets
 logits = your_model(graphs, queries)

Index

 nav.xhtml

 Table of Contents

 		
 GraphLog documentation

 		
 Installation

 		
 Basic Usage

 		
 Loading the data

 		
 Viewing the data

 		
 Extracting dataloaders

 		
 Supervised Training

 		
 Advanced Usage

 		
 Similarity

 		
 MultiTask training

 		
 Difficulty

 		
 Continual Learning

_static/plus.png

_images/graphlog_rule.png
1’1/\7‘4 —>
1’1/\7‘2 —>

Yo
Fs

_static/file.png

_static/minus.png

